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A finite-amplitude model of baroclinic instability is studied in the case where the 
cross-stream scale is large compared with the Rossby deformation radius and 
the dissipative and advective time scales are of the same order. A theory is 
developed that describes the nature of the wave field aa the shear supercriticality 
increaaes beyond the stability threshold of the most unstable cross-stream mode 
and penetrates regions of higher supercriticality. The set of possible steady 
nonlinear modes is found analytically. It is shown that the steady cross-stream 
structure of each finite-amplitude mode is a function of the supercriticality. 

Integrations of initial-value problems show, in each case, that the final state 
realized is the state characterized by the finite-amplitude mode with the largest 
equilibrium amplitude. The approach to this steady state is oscillatory (non- 
monotonic). Further, each steady-state mode is a well-defined mixture of linear 
cross-stream modes. 

1. Introduction 
The important insight in fluid mechanics gained from analytical studies of 

the finite-amplitude dynamics of unstable perturbations is usually obtained 
only at the cost of restrictive parametric assumptions. Chief among these is the 
limitation that the supercriticality of the flow, i.e. the degree of linear instability, 
is small. In  this Iimiting case the small linear destabilization can be matched by 
possible nonlinear stabilization well within a systematic small (but finite) 
amplitude perturbation theory. Although this quantitative restriction is 
limiting, it still provides a fruitful framework for the understanding of important 
nonlinear phenomena. In  the meteorologically and oceanographically important 
problem of baroclinic instability it has provided important information about 
the mechanism and nature of the finite-amplitude stabilization process within 
a systematic and easily understood formalism (e.g. Drazin 1970; Pedlosky 1970, 
1971; Hart 1973). 

However, an important consequence of the restriction to small supercriticalities 
is that, except in unusual circumstances, only the threshold of the most unstable 
mode can be crossed. The marginal-stability curves of the less unstable modes 
are usually sufficiently distant from the corresponding neutral curve for the most 
unstable mode that the less unstable modes rapidly damp in the presence of 
viscosity. They therefore play little role in the dynamics. 
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The purpose of this paper is to consider a situation where, within the syste- 
matic formalism of weakly nonlinear dynamics, several instability thresholds can 
be crossed. This allows an examination of the finite-amplitude dynamics of flow 
states that are supercritical to several modes of motion. It is then possible to 
discuss the various finite-amplitude steady states that are theoretically possible 
and their relative stability. At least in so far as this multiple supercriticality is 
concerned, such a situation may be helpful in understanding the nonlinear 
dynamics of perturbations not limited by weak instability. 

The problem considered is the fhite-amplitude dynamics of a baroclinic wave 
in a viscous fluid in a channel whose width L is large compared with the Rossby 
radius of deformation (a length scale which characterizes the stable vertical 
density gradient). For a$xed downstream wave number? the stability criterion 
(see below) depends weakly (but non-trivially) on the cross-stream mode 
structure. The most unstable disturbance has the gravest cross-stream mode 
shape, while each of the higher cross-stream harmonics is slightly more stable. 
I n  this parameter limit it is then possible to examine supercritical states which 
are unstable to several cross-stream modes. 

For supercriticalities small enough such that only the fist mode is slightly 
unstable, the basic structure of the mode is determined by linear theory. For 
greater supercriticality the very structure of the cross-stream eigenmode, a as 
well as its amplitude, is shown to be determined by nonlinear effects. The 
structure of the steady eigensolutions is dominated by a balance of linear and 
nonlinear effects which tend to "reduce the cross-stream variation except (for 
larger supercriticalities) in narrow highly nonlinear regions. 

For the problem considered here, detailed calculations of several initial-value 
problems show that, in the presence of viscosity, the final, finite-amplitude state 
is found to be that associated with the mode whose linear growth rate is largest. 
The approach to this steady state is oscillatory rather than monotonic as is the 
case for small supercriticality. 

2. The model 
The model considered is the two-layer model introduced by Phillips (1951) 

modified by the presence of viscous Ekman layers on the bounding horizontal 
surfaces. The reader is referred to Pedlosky (1970) for a detailed derivation of the 
appropriate equations in the quasi-geostrophic (rapidly rotating) limit. Suffice 
it to say that the model consists of two layers of homogeneous fluid, each with 
a different uniform density. These layers lie on a horizontal plane rotating with 
angular velocity R. The lighter fluid lies above the denser. The fluid is bounded 
above and below by rigid horizontal planes separated by a distance D. The 
interface between the two fluids is considered for simplicity to be equidistant 
from the two horizontal planes in the absence of motion. The fluid is confined 
laterally to a channel infinite in length and whose width is I,. 

t This choice is made for two reasons: it produces a tractable, interesting and mathe- 
matically consistent problem; and experimental observations (e.g. Hart 1973) suggest the 
importance of finite-amplitude states (steady and fluctuating) with this property. 
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The basic state whose stability is to be investigated is chosen to be the shear 
flow consisting of a rectilinear horizontally uniform flow in the upper layer with 
an equal but oppositely directed flow in the lower layer. The earlier studies 
referenced in the introduction indicate that this provides a realistic model for 
baroclinic instability and its finite-amplitude evolution. 

The non-dimensional equations governing the disturbafice fields can be shown 
to be (Pedlosky 1970) 

(Z+TZ)  a u, a ~ V 2 ~ ~ - ~ F ( $ 1 - $ 2 ~ l + ~ U , ~ + ~ ~ ~ $ 1 + J ~ $ 1 , V ~ $ l - ~ ~ 4 1 - 4 2 1 ~  = 0, 

( 2 . 1 ~ )  

= 0. 

(2.1 b) 

I n  these equations subscripts 1 and 2 refer to variables defined for the upper and 
lower layers respectively. Scales L, U and L/U have been used to scale horizontal 
lengths, horizontal velocity and time, respectively. Distance down the channel 
is measured by x and distances across the channel by y ,  with corresponding 
velocities u, and v,. These horizontal velocities are obtained from the per- 
turbation stream function $,@, y, t )  by 

u, = -a$,/ay, v, = a$,/aX. (2.2a, b )  

The effects of viscosity which appear in (2.1) are a consequence of the action 
of Ekman layers on the horizontal bounding surfaces and are given by the 
terms rV2+, in (2 . l ) ,  where 

Here E is the Ekman number, e the Rossby number defined by 

a ' a [V242 - F ( 4 ,  - $1)] - PU, 2 + rV211r, + J($2, V2$2 - P ( 4 ,  - (Z-TG) 

r = E*/e. (2.3) 

E = v/IRD2, 8 = U/2Q.L, (2.4a, b )  

where v is the fluid's kinematic viscosity. The ratio r will throughout this paper 
be considered an O( 1) quantity. The nonlinearity in (2.1) is given by the Jacobian 
of the stream function and the potential vorticity in each layer, that is 

- -  
A crucial parameter in (2.1) is 

4Q2L2 = L2/R2, 
MAPIP) D 

F =  

where Ap/p is the fractional density difference between the two layers. P is the 
square of the ratio of the channel width L and the Rossby deformation radius 

In  this paper we shall examine cases where P is large compared with I .  The 
basic state consists of the shear flow 

= *us = -u2, (2.7) 

where U, is a constant. Thus u1 + u2 = 0 while V, = u1 - u2 for the basic state, 
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The appropriate boundary conditions for (2 .1 )  are (Pedlosky 1970) 

a+,pX = o (9 = 0, 1) (2.8) 

a2@,/ay at = o (y = 0, I) (2.9) 

for the wave portion of the disturbance, with the complementary condition 

for corrections to the 2-independent velocity field. 

3. Mathematical formulation 

(2.7) will be unstable with respect to disturbances of the form 
Linear stability theory (Pedlosky 1970) shows that the basic state given in 

@, = A,  eiHz4) sin mn-y + * (3.1) 

(where * represents the complex conjugate of the preceding term) if V, exceeds 
the critical value U', where 

= ruk-'(2P-a2)d (a2 < 2F) (3.2) 

and a2 = k2 +man2. (3.3) 

In (3.1), m is any integer greater than zero. For given r ,  k and P, the lowest 
value of U, occurs for m = 1. Higher cross-stream modes are always more stable 
according to linear theory. In general kc is given by the relation 

kc = - (3.4) 

The threshold for instability of the basic state is given by the neutral-stability 
curve corresponding to m = 1, so that 

q = 2ra1 k-1(2F - af)-t, (3.5) 

where af = k2 + n-2. (3.6) 

If V, exceeds U, by the small amount U,A, it follows from (3.4) that the growth 
rate - ikc is given to O(A2) by 

2(2F+a2) [ A u ~ , ( ~ F - u ~ ) - F ( u ~ -  
(a2 + F)2 

-- =+- 
r u2 + 2F 

If a2 = a:, the growth rate will be positive. Since 

a%--.; = (m2- l)+, (3.8) 

the higher modes are less unstable, or even stable if A is not large enough, i.e. 
the mth mode will be stable if 

A < (m2- l )n2F/u~(2F-a2) .  (3.9) 

The minimum critical shear, i.e. the minimum value of U, as a function of k, 
occurs when 

k2 = ?7[(2P)4-n], (3.10) 
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for which value 
27, = 2r[(2P)*-77]-1. (3.11) 

Now consider the case? F B 1. As long as m is O(l), it follows from (3.10) 

u2 = O(k2) = O(Fh). (3.12) 

According to (3.9) the magnitude of A required to cross the stability curve ofthe 
mth cross-stream mode is 

A = & E 2-8(m2- l ) n P 4  = O(P-4). (3.13) 

Thus for large P the neutral curves of the highr cross-stream modes are pene- 
trated by even small supercriticalities A as long as 

F*A = O(1). (3.14) 

This will be the basic parameter setting of this study. These results suggest the 
following rescaling : 

6 = F b  (from 3.10), T = AF-tt (from 3.7), V, = 'iYcFt (from 3.11). 
(3.15 a-c) 

that for the most unstable waves 

(3.17 u) 

t Formally, this limit is considered subsequent to the limits 8 +O, E + O .  

40 FLM 70 
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The perturbation stream functions are now expanded in the series 

(3 .19)  

This expansion is inserted in (3 .17)  and leads to a sequence of linear problems, 
the first of which, at order one, yields 

T - T +,u$'?f!+p2$'$+ ... ,I . 
$B = $$$+p$$+p2$g+ ... 
$ - $(O) 

(3 .20a ,  b )  

from which it follows that 

aC = 29r, $9 = - 2 4  a$plat. (3 .21 ) ,  (3 .22 )  

Thus, a t  this leading order only the asymptotic critical shear for large P and 
the relation between the barotropic and baroclinic perturbations are determined, 
as seen on comparing (3 .5 )  with (3 .21) .  The structure of the perturbation is still 
unknown. 

The O(p) problem yields, with the aid of (3.21) and (3 .22) ,  

At this stage, we look for solutions of the form 

$y = OT(y, T) +f(y, T) eid+ *. (3 .24)  

Thus the lowest-order solution consists of a slowly varying correction to the 
zonal flow plus a wave field with a single zonal wavenumber a but an arbitrary 
cross-stream structure. 

If (3.24) is substituted into (3 .23)  and (3 .23a)  is integrated once with respect 
to 6, subtraction of (3 .23b)  from ( 3 . 2 3 ~ )  yields two equations. One is for that part 
of the remainder that is independent of 5, while the other is for that part which 
varies as exp (iat) .  Naturally both must vanish separately. The result is 

Let 

(3.25) 

(3.26) 

(3 .27a ,  6 )  

where s2 = 2 a 2 ( u -  &a2), r = 8rT. (3.28) 

It then follows that (3 .25)  and (3 .26)  can be put in the more agreeable form 

(3 .29a ,b )  
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These equations have a simple interpretation. The first, (3 .29a) ,  is the evolu- 
tion equation for the baroclinic wave perturbation q5. The second represents the 
evolution in space and  time of the correction to the mean zonal flow. This 
correction is produced by rectified transports of vorticity produced by the wave 
field andrepresented by the term on the right-hand side of (3.293).  This correction 
to the zonal flow changes the effective growth rate of the perturbation field and 
this effect is represented by the term on the right-hand side of ( 3 . 2 9 ~ ~ ) .  The 
appropriate boundary conditions for (3 .29a,  b )  are, from (2.8) and (2 .9) ,  

U = q 5 = 0  ( y = 0 , l ) .  (3.30) 

It is important to note that the cross-stream structure of the wave, as well as 
its evolution in time, is to be determined from (3 .29) .  This is in contrast to the 
cases studied earlier (Pedlosky 1970), in which the cross-stream structure is 
determined by the linear problem for marginal stability. In the case at hand the 
structure of the wave field is a function of its amplitude and will evolve with time. 
Furthermore the problem is of second order in time rather than first order as is 
usually the case when r = O(1) (Pedlosky 1970). This point will be discussed 
further below. 

4. The linear and slightly supercritical problems 
It is helpful to reconsider briefly the linear stability problem in the context 

of the system (3 .29) .  For time intervals small enough that q5 and u are still small, 
( 3 . 2 9 ~ )  reduces to 

aq5la7 - a2q5/ay2 = s". ( 4 - 1 )  

Solutions of (4 .1)  in the form 

q5m = A exp ( vm t )  sin mny 

v,,, = s2 - m2n2. 
satisfy (3 .29a)  and (3.30) if 

( 4 4  

Hence the mth cross-stream mode is linearly unstable if s > mn. With the aid 
of (3.28),  (3.21),  (3.18) and (3.15e),  it follows that the critical shear obtained 
when s = rnn is 

(4 .3)  

where k = aF*. (4.4) 

It is easy to verify that (4 .3 )  is the large-F limit of (3 .2 ) ,  while (4 .2)  is the 
corresponding limit of (3 .4) .  Hence if s2 > m2m2 the cross-stream modes sinjny 
with 1 < j < m are unstable, while cross-stream modes with j > m are linearly 
stable. On the other hand, if s2 only slightly exceeds the Jirst critical bifurcation, 
i.e. if 

s2 = nZ+w, (4.5) 

where (4.6) 
42-2 
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it follows that the growth rate will be small, O(o), and that T should be rescaled 
by 8 = 07. Doing so (3.9a, b) become 

from which it follows that, to lowest order in o, 

while to the same order 
u = - 

# = d A ( 0 )  sinny, 

(4.8) 

where A(8)  is seen to satisfy, after the usual (Pedlosky 1970) expansion process, 
the J’irst-order equation 

3n2 A - - AIA 12. dA 
ae 4 
-=  (4.9) 

This leads to monotonic equilibration and a steady wave amplitude. 
The essence of the considerations of the present study is the question of how 

this behaviour, which is standard for weak supercriticality, is altered when s8 
is sufficiently large that o = O(1) or equivalently, when more than one linear 
mode is unstable. Clearly, only when w is small will the cross-stream structure 
be determined independently of the amplitude behaviour. That is, when 
s2-n2 = O(l ) ,  we are confronted with the strongIy nonlinear problem (3.29) 
rather than the sequence of linear problems for the wave structure arising from 
(4.7). 

5. Steady nonlinear modes 
By linear theory, steady solutions are possible only when s = n. When s 

slightly exceeds this threshold (4.9) implies that eventually a steady wave of 
amplitude 2 x 36(s2/n2- 1)) is achieved. In this section the nature of the 
finite-amplitude steady solutions for s arbitrarily greater than this first threshold 
are examined. 

It follows from (3.29) and (3.30) that without loss of generality q5 can be 
considered real. Further, in the steady problem 

U(Y) = -P((Y), 
so that #(y) satisfies 

d2#/dy2 - s’#( 1 - 4’) = 0, #(O)  = +( 1) = 0. (5.2) 

Solutions of (5.2) which satisfy # ( O )  = 0 are (Byrd & Friedman 1971) 

where an is the Jacobian elliptic function with argument 2-bv-1A0 y and modulus 
v. The modulus and amplitude are related by the condition 

(5.4) A ,  = 2*v(v2 + 1)-*. 
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FIGTJRE 1. Bifurcation diagram showing the amplitude of the first four steady 
cross-stream modes w a function of supercriticality. 

The function an (2, v) has its zeros at the points 

xj = 2 j K ( ~ )  (j = 1,2,3 ...), (5.5) 

where K (  v) is the complete elliptic integral, 

The condition q5( 1) = 0 is therefore satisfied only if 

S 

V 
2 - 9 4 )  = s(v2+1)-4 = 2jK(v) .  (5.7) 

In  the range 0 < v < 1, K(v)  is a monotonically increasing function. Its 
minimum value at Y = 0 is seen from (5.6) t o  be +n and it logarithmically 
approaches insnity as v + l .  It follows from (5.7), therefore, that, for eachj, 
s must exceed jn for a steady solution to exist. When this is compared with 
(4.3) it follows that, when s exceedsjn, exactly j nonlinear steady solutions are 
possible and these correspond to the crossing of the linear stability threshold 
of thej th  linear cross-stream mode. For eachj, (5.3) may be rewritten as 

#(y) = A,sn(2jK(v)y2 (5.8a, b) 

where A, = 2b(v2 + l)-8 and where v(s) is determined from (6.7). The amplitude 
of the wave is therefore determined entirely as a function of s. The amplitudes 
of the first four steady solutions as a function of s are shown in figure 1. There are 
several important things to note about this amplitude diagram. As previously 
remarked, the number of steady solutions that are possible at a given value of 
s depends on the degree of supercriticality, i.e. the number of cross-stream modes 
that would be linearly unstable at that s. For values of s > 2n more than one 
steady solution is always possible but not simultaneously. That is, for s > 2n 
at least two steady solutions exist, but no non-trivial linear superposition of these 
steady solutions will satisfy (6.2). Thus, if the system evolves to a steady state it 
must choose between several possible equilibrium states. 
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Y 
FIGURE 2. The spatial structure of the first cross-stream mode for 8 = 6-28 

( ~ ( 8 )  = 0.92) compared with the linear sinusoidal mode (0 < y < 0.5). 

Furthermore, as is clear from figure 1, the amplitudes of the various possible 
steady solutions each approach unity as s becomes large. In  fact, using the 
asymptotic form (Byrd & Friedman 1971) of K(v)  as v + l  (s 9 l), it  can be 
shown that, for s < jn-, the amplitude of the wave mode is given by 

Aoj - 1 -iexp{-(s/jx 2*-2.772)}. (5.9) 

It should be noted, however, that because of the resealing implied by (3.27b) 
the actual amplitude of the wave is sAoj. Hence the amplitude difference between 
modesj and k is, for large s, 

s(Aoj-Aok) = -$s{exp[-(s/jx 2*-2*772)]-exp[-(s/kx 2*-2.772)]}. (5.10) 

Thus, asymptotically, for very large s the first few modes will have nearly 
identical amplitudes. However, even for moderately large s the amplitude 
differences are considerable. For example; for s = 10, for which value exceeds 
the stability threshold of the first three modes, s(Ao1-Ao2) is 1.233 or about 
12 yo of the larger amplitude. 

The structure in y, as well as the amplitude of the nonlinear modes, is also a 
function of the supercriticality. For values of s that only slightly exceed the j t h  
threshold, s = jn-, the structure of thejth mode, from (5.8), is given by 

$j(Y) = AOj sin (jry). (5.11) 

As s increases beyond this threshold the structure of the elliptic function distorts 
the simple sinusoidal character of the eigensolutions. Figure 2 shows the first 
cross-stream mode at a value of s = 6.28. Note the tendency of the nonlinear 
mode to bejatter over the central portion of the channel and steeper near the 
boundaries. Figure 3 shows the cross-stream structure for an even more extreme 
value of s = 15.37. This limiting behaviour for large s can be understood directly 
from (5.2). For large s, (5.2) indicates that almost everywhere #z = 1. This is in 
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FIGURE 3. The spatial structure of the first cross-stream 
mode for 8 = 15.37 (v = 0.99) (0 < y < 0-5). 

agreement with the amplitude results discussed above and the tendency towards 
a uniform distribution of disturbance amplitude with y with increasing nonlinear 
effects. Naturally, since # must vanish a t  y = 0 and y = 1, narrow regions of 
rapid variation are observed near the walls. These regions decrease their width 
inversely with s. 

The higher modes withj  > 1 have nodes at the positions 

yjP =  PI^ (P = 0,1,  2, ... ,j), (5.12) 

i.e. precisely the same positions as those given by the linear solution (5.11). 
However, for each j ,  as s exceeds jn by greater and greater amounts, the space 
between the nodes is characterized by regions of more and more uniform values 
of # punctuated by narrow regions around the nodes where # rapidly changes 
from $ = - 1 to $ = + 1. Fairly extreme values of s are required for this simple 
description to be very accurate. However, it  does describe the tendency of the 
nonlinear effects to distort the modal structure. 

An alternate way of characterizing the nonlinear steady modes is in terms of 
their harmonic content. That is, given the vanishing of # a t  y = 0 and 1, each 
nonlinear mode can appropriately be expanded in a sine series, each term of 
which is individually a mode of the linear problem. 

The following definitions are standard and useful: 

vl = (1 - v2)4, li? = K(vl) ,  q ( v )  = exp ( -nK1/K).  (5.13) 

Furthermore it is known that (Byrd & Friedman 1971) 

(5.14) 
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8 3.24 
& 

$11 $21 0.277 0 
$12 $*a 0 0 

$14 $24 0 
$15 ga6 3.2 x 10-7 o 
$16 $28 0 0 

$28 1 . 2 5 ~  0 

4.92 

0.9116 0 
0 0 
0.0498 0 
0 0 
0-0028 0 
0 0 

1 
f \ 

7.107 10.42 
&& 

1.088 0 1.182 0 
0 0.507 0 0.9454 
0.130 0 0.2325 0 
0 0 0 0 
0.018 0 0.0598 0 
0 0.005 0 0.0591 

TABLE 1. The haxmonic content of the steady eolutions 

In the present case this yields 

(5.15) 

Since q(v)  is a tabulated function of Y while v is a function of .s through (5.7), 
the harmonic content 45,, of the j th  mode can easily be determined at each s. 
Some examples are shown in table 1, where the first six harmonics are tabulated 
for j  = 1 and 2. 

Table 1 shows that for slight supercriticalities, for example, for 

s = 3-24 = nfO.1 ,  

the harmonic content of the f i s t  mode, which is the only possible mode, is almost 
entirely in its f i s t  harmonic. The second harmonic of the first mode is always 
identically zero, while the third harmonic is very small, i.e. O(10-8). On the 
other hand for large supercriticalities, e.g. s = 10.42 (for which (s- sc)/sc = 2-316, 
where s, = n), the harmonic content of both the first and second nonlinear 
modes is richer. For the first mode the third harmonic is now 20% of the first 
harmonic. The second mode is almost entirely given by the second harmonic. 
The sixth harmonic (the second mode's next non-trivial harmonic) has only 6 yo 
of the amplitude of the second. Thus, even for fairly large supercriticalities, the 
steady solutions are represented quite accurately by the first half-dozen Fourier 
harmonics. 

Naturally, there is no a priori guarantee that these steady solutions are 
relevant. It is conceivable, especially where more than one steady solution is 
possible, that either alI or all but some of the steady solutions are unstable. In 
the former case the solutions to the initid-value problem would remain time- 
dependent while in the latter case only the stable steady solution(s) would be 
realizable. To answer these questions it is necessary to return to the time- 
dependent set (3.29). 
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6. The time-dependent problem 

(3.29) to spectral form, writing 
In order to study the time-dependent problem, it is useful to transform 

W W 

$(y,  7 )  = Z &(t)  sin Kny, u(y, 7) = x ug(t)  sin Kny. (6.1 a, b )  
K = l  K = l  

Then (3.29) can be turned to an infinite set of ordinary differential equations 
for the spectral amplitudes &(r), uE(r), viz. 

( 6 . 2 ~ )  

(6.2 b )  

(6.3) where qEmn = - 4 Kmn [l- ( -  l)K+rn+"]. 
n(K2-(m-n)2) (K2-(m+n)2)  

In  fact, guided by necessity and the results of the steady problem, the infinite 
sums in (6.2a, b)  are truncated such that 

l < m < N ,  l < n < N .  (6.4) 

The resulting set of 2 N  ordinary differential equations was integrated numeri- 
cally by a Runge-Kutta scheme. The time r was discretized such that each time 
step corresponded to an interval in 7 of A7/n2. For most of the calculation, A7 
waa chosen to be 0.01 and N = 6. As a test caae in two of the calculations AT waa 
halved while in another N was doubled to 12. In  no case was a significant difference 
in the numerical results obtained. In  the interpretation of the results it is useful 
to keep in mind that each nonlinear mode consists of a subset of the Fourier 
modes, e.g. the first nonlinear mode is made up of the first, third and fifth (etc.) 
and it is the lowest Fourier mode in each subset which dominates. Thus in the 
figures presented below only the dominant Fourier components of each of the 
nonlinear modes are presented. 

7. Results 
Figure 4 presents the results of a calculation for which t s  = 2.0, so that while 

the system is quite supercritical with respect to the first mode, (8 - sC)/sc = 33 yo, 
it is still considerably subcritical with respect to the second mode. In  this cal- 
culation the first Fourier harmonic rapidly attains its equilibrium value as 
determined from figure 1. There is, however, a slight overshoot of the amplitude 
q51(t). The amplitude of the second mode, stable by Iinear theory, rapidly 
diminishes to  zero. 

Figure 5 presents the results of a calculation at a higher supercriticality 
(4s = 3.49) for which both the first and second Fourier modes are linearly unstable. 
Figure 5 shows that and $8 eventually attain their steady-state values (labelled 
A,, and A,, respectively) appropriate to the nonlinear, steady, Jirst mode. On 
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FIGURE 5. The time histories of u1 and uQ as a function of time. Note the non- 
monotonic approach of the Fourier components of the first nonlinear mode to their 
equilibrium values and the decay of the second mode. s = 6-98. 

C2, 

the other hand, q&(t), which well represents the amplitude of the second possible 
nonlinear mode, rapidly diminishes to zero. The solution has converged to the 
first nonlinear mode.? Thus the mode which is most unstable according to 
linear theory, or equivalently, has the largest nonlinear steady-state amplitude 
is the one realized as the solution to the initial-value problem. Figure 5 also 

t This was further checked by doubling the range of integration in t .  

FIGURE 4. The amplitude of the first two Fourier harmonics as a function of time for 8 = 4. 
Note the approach of to its equilibrium value and the decay of $2. Only the first nonlinear 
mode is a possible steady solution for this value of 8. 
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increased oscillation, though damped, for this larger s. 
FIGURE 6. The time histories of and q52. s = 1043. Note the 

shows the time history of the zonal flow corrections zcl(t) and u3(t). It is interesting 
and important to note that the progress towards equilibration is now no longer 
monotonic. The evolution in time is considerably oscillatory and the oscillations 
only gradually damp to the steady solution. Further, there is considerable 
overshoot of the equilibrium amplitudes. It is also interesting to note that 

and #3 oscillate in phase with each other. 
This oscillatory behaviour, it  is clear, is a function of the increasing super- 

criticality since, as was shown in (4.9), ,for this region of parameter space very 
slight supercriticality would produce monotonic equilibration of the classical 
Landau type. 

Figure 6 shows the results of a calculation at yet a higher supercriticality 
(as = 5,219). At this value of s the first three cross-stream modes are linearly 
unstable. Once again the solution converged to the first nonlinear steady mode, 
after considerable oscillation. This is a particularly important case, because for 
this s, as figure 1 shows, the amplitudes of the first two nonlinear modes are fairly 
similar. Nonetheless, the solution converged to the mode favoured by nonlinear 
steady theory with the larger amplitude. This particular calculation was checked 
by doubling the truncation level to 12 for both $= and u, with no alteration in 
the results. 

An attempt was made to see whether the second nonlinear mode might be 
conditionally stable in the sense that initial conditions ‘close’ to the second 
nonlinear mode might be maintained with time. In  figure 6 both and $2 had 
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F I U m E  7. Thetimehistoriesofg5, rtnd4,fortheaamesupercriticalityasinfigur 6 (s = 10.43). 
In this case &O) 9 41(0). The evolution of to its equilibrium value and the rapid 
disappearance of q5g show the relative instability of the second nonlinear mode with respect 
to the first. 

equal initial conditions. For the same value of a the experiment was repeated 
with q51 having only about 10 yo of the amplitude of #l. Within a time mr27 = 0.5, 
q51 surpassed in amplitude and reached the same asymptotic limit, namely, 
the absence of the second nonlinear mode and the final emergence of the steady, 
first nonlinear mode. 

It is difficult to ‘prove’ anything with only numerical calculations, but the 
suggestion is inescapable. Although the nature of the equilibration is non- 
monotonic, and oscillatory, the solutions, even for considerable supercriticality, 
converge to the first nonlinear mode as calculated analytically. The higher 
nonlinear modes seem unstable with respect to the first. It should be kept in 
mind, however, that the fist (indeed each) nonlinear mode is a mixture of 
Fourier modes. In  that sense the end state is a mixed li’ourier mode state whose 
harmonic content is determined by (5.15). 

8. Conclusions 
Earlier studies referenced in the introduction have shown that when the ratio 

of the dissipation to advective time scales for the fluid is O( l), weakly nonlinear 
theory predicts a monotonic approach to a final equilibrium state. The baro- 
clinic wave in that state for such substantial dissipation has a spatial structure 
determined by linear theory and is a simple Fourier mode. The present study has 
allowed a considerable extension of the dynamics to cases where the super- 
criticality is large enough so that several modes are unstable. 

The main result herein is that the baroclinic waves converge in time to the 
finite-amplitude solution with the largest steady-state amplitude. This nonlinear 
mode is a ‘mixed-mode’? in the sense described by Lorenz (1963) but this is 

t That is, containing several linear modes. 
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merely because each separate nonlinear mode consists of a spectrum of Fourier 
modes. 

Experiments by Hart (1973) showed that continual fluctuations or limit 
cycles were found for systems too viscous to support the limit-cycle behaviour 
found by Pedlosky (1971) for small supercriticality. The preeent theory also does 
not yield such continuing fluctuations. The emergence, however, of (ephemeral) 
oscillatory behaviour in these substantially dissipative cases encourages the 
following speculation. It is possible that the present large-F analysis, redone 
for smaller dissipation, might yield limit-cycle behaviour when the small super- 
criticality theory (Pedlosky 1971) is yet still too viscous. This notion is encouraged 
by the fact that Hart has observed these fluctuations at  large 3. This problem 
is being studied further. 

This study was partially supported by a grant from the Atmospheric Sciences 
section of the National Science Foundation. 
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